

Fraternite

Systemic resistances of banana as a potential tool to control Fusarium oxysporum f. sp. cubense race 1

(Preliminary exp.)

Mendoza Rodríguez J, Portal N., Bolaños Hernández L., Pérez Bonachea L., Yanes Paz E., González Rodríguez R.M., Santos R., <u>Soler A ^(*)</u>

Partners

CIRAD, UPR GECO, F-97455 Saint-Pierre, Réunion, France. GECO, Univ Montpellier, CIRAD, Montpellier, France.

Ecological functioning and sustainable management of banana and pineapple agrosystems (pest & disease management through rotation systems and systemic resistances)

Centro Bioplantas, Universidad de Ciego de Avila, Cuba,

Laboratorio de Interacción Planta - Microorganismo, Centro de Bioplantas, (Interaction Foc – banana, Phytophthora – pineapple, systemic resistances)

Funding European : FEDER in Réunion and Erasmus+ (2022-2023)

Why Systemic Resistances to control Foc r1 ?

Former experiences in controling Mealybugs (wilt) in pineapple

Systemic Resistances = Inducible natural defenses

Former experiences in controling nematodes in pineapple (field level, Soler et 2020)

Systemic resistances to control nematodes with bacterial

BIOPLANTAS

Former experience in controling nematodes in banana

BIOPLANTAŠ

Mat.Meth.

Fusarium oxysporum sp cubense r1

Field isolates tested on vitroplants Frayssinette and Manzano then re-isolated.

The inocula were produced from monosporic cultures of Foc r1

Frayssinette (AA) and Manzano (AAB) are varieties susceptible to Foc r1

Foc r1 described as hemi-biotrophic fungus

Mat.Meth.

Biological effect evaluation

Symptoms evaluation : Scale of severity (S), (%) and incidence (I), (%)

• External symptoms

Internal symptoms

Mat.Meth.

Molecular effect evaluation

Molecular effect	Varieties	Timing
Short term modulation of expression of molecular markers after Foc r1 inoculation	 Frayssinette susceptible to Foc r1 Cavendish tolerant to Foc r1, but susceptible to TR4 Cirad Hybrid resistant to Foc r1 & TR4 	12h after inoc.48h after inoc.48h after inoc.

- RNA extraction with the Qiagen Plant mini Kit on 150mg deep frozen root in liq N₂ (6 replicates).
 (In house modification of Qiagen protocol for banana to protect RNA from latex and phenolic compounds)
 - RTqPCR with Fast SybrGreen Mix on StepOne equipment (Applied Biosystem)

Molecular Markers tested :

- PAL, ICS, and NPR1 related to control of salicylic acid biosynthesis and SAR signaling pathway
- PR3, PR1 and CYS, related to defenses

Results normalized to Ctrl(-) (unstimulated – not inoculated controls), and the graphic shows differences between Ctrl(+) and tests for each variety.

Results Foc r1 and external symptoms on stimulated plants (SAR and ISR)

Variety Manzano

160dpi

80dpi

Results Foc r1 and external symptoms on stimulated plants (SAR and ISR)

Results normalized to Ctrl (+), graphic shows Ctrl (+) – test

(unstimulated, Inoculated plants) – (stimulated and inoculated plants) (Anova)Tukey test, $p \le 0.05$

- ISR induced by **jasmonates** (0.1mM and 1mM) reduced significantly severity and incidence of symptoms at 80 and 160 dpi.

- SAR induced by **acibenzolar S-methyl** (1mM) reduced less severity of symptoms than jasmonates (+ Phytotoxicity ???)

Foc r1 on internal symptoms on stimulated plants (SAR and ISR)

- ISR induced by jasmonates (0.1 and 1mM) reduced internal symptoms at 80 and 160 dpi.
- SAR induced by Acibenzolar S-methyl (1mM) reduced slightly internal symptoms at 80 dpi.

Results

Results

Égalité Fraternite

Foc r1 on molecular markers on stimulated plants (SAR)

Hypothesis 1 : Foc r1 is biotrophic at early stage of infection (SAR), then necrotrophic later (ISR) Hypothesis 2 : Foc r1 penetration is faster in sensitive varieties so timing for analysis - 12hpi for sensitive var. - 48hpi for resistant var.

- In Frayssinette : up-regulation of SAR pathway and SA synthesis (/SA), Defense proteins (/MESA)
- In Hybrid : up-regulation all markers except PAL (/MESA & /SA)
- In Cavendish : at 48h Ctrl(+) showed higher gene expression than stimulated plants, (incorrect evaluation may result from time-shifted after stimulation and transient gene expression, need for a time-course expression of genes)

Results

Time-course for expression of molecular markers on stimulated plants and unstimulated plants (SAR)

The time-course of genes expression in pineapple (short term effect) in the interaction mealybugs / pineapple.

An incorrect evaluation may result from the time-shifted after stimulation and transient expression of molecular markers.

RÉPUBLIQUE FRANÇAISE

- ISR Priming inducers by jasmonates reinforced self-protection the plant. Reducing severity and incidence of wilt symptoms at very low concentrations (0.1mM).
- SAR Priming inducers as salicylic ac and methyl-salicylate regulated genes expression in signaling pathway and defense genes in the different varieties, resistant or not, at early stages of *Foc r1* infection.
- The behavior of *Foc r1*, first biotrophic then necrotrophic, suggests a short-term effects for SAR during fungus penetration in roots, then a longer-term effect for ISR to limit the wilting of the banana.

- Stimulation of Systemic resistances cannot be used as a simple pesticide
- An Optimal environment for systemic resistances is an ecological agrosystem that reduces stresses of the plants :
 - Reducing of pests inoculum
 - Then the primed plant takeover it self-defense
- Not all varieties respond positively to stimulation of systemic resistances.

THANK YOU for your attention

