

21 tree species

3300 \$/ha/year

- 50 kg N/ha/year

Gambart, C. et al. (2020) 'Impact and opportunities of agroecological intensification strategies on farm performance: A case study of banana-based systems in Central and South-Western Uganda', Frontiers in Sustainable Food Systems, 4(June), pp. 1–13. doi: 10.3389/fsufs.2020.00087.

Exploring nitrogen use efficiency in Musa spp.

Clara Gambart, Marlies Vanluchene, Rony Swennen, Sebastien Carpentier

Clara Gambart PhD student

Laboratory of Tropical Crop Improvement KU Leuven, Belgium

clara.gambart@kuleuven.be

High-throughput phenotyping platform

ITC collection

Greenhouse

Treatment optimalization

BananaTainer

© Urban Crop Solutions

High-throughput phenotyping

Treatment optimalization

- Bluggoe (ABB)

- Cachaco

Mutika/Lujugira (AAA-EA)Mbwazirume

- Cavendish (AAA)
 - Valery
 - Williams

Nitrogen concentrations

- 0 mM
- 0.6 mM
- 1.3 mM
- 7 mM

8

Treatment optimalization

0 mM N 1.3 mM N 0.6 mM N 7 mM N

Root length ↑

Chlorophyll ↑

Laboratory of Tropical Crop Improvement

Treatment optimalization

One-way ANOVA Most of the variation explained by genotype

Less N, higher NUE

KU LEUVEN

High-throughput phenotyping platform

ITC collection

Greenhouse

Treatment optimalization

BananaTainer

© Urban Crop Solutions

High-throughput phenotyping

BananaTainer

© Urban Crop Solutions

E-poster: Combat climate change with biodiversity- high throughput phenotyping of the banana diversity for suitability in current and future agro-ecozones

3 layers, 2 separate circuits 504 plants

HC 2027

Laboratory of Tropical Crop Improvement

BananaTainer

© Urban Crop Solutions

\$ Banksii (AA) Nitrogen concentrations Bluggoe (ABB) Cavendish (AAA) 0.6 mM Gros Michel hybrid (AAAA) - 7 mM -Mutika/Lujugira (AAA-EA) Mysore (AAB) Peyan (ABB) Red (AAA) -Silk (AAB)

BananaTainer

Laboratory of Tropical Crop Improvement

KU LEUVEN

SCIAT

Conclusion

Thank you for your attention!

Exploring nitrogen use efficiency in Musa spp.

Clara Gambart, Marlies Vanluchene, Rony Swennen, Sebastien Carpentier

Clara Gambart PhD student

Laboratory of Tropical Crop Improvement KU Leuven, Belgium

clara.gambart@kuleuven.be

Nutrient solution composition

Chemical product	Nutrient solutions						
(g/100l)	0 mM N	0.6 mM N	1.3 mM N	7 mM N			
K ₂ SO ₄	148.12	148.12	148.12	148.12			
MgSO ₄ .7H ₂ O	369.71	369.71	369.71	369.71			
KH ₂ PO ₄	544.29	544.29	544.29	544.29			
NH ₄ NO ₃	0.00	2.40	5.20	29.90			
H ₃ BO ₃	1.14	1.14	1.14	1.14			
MnSO ₄ .H ₂ O	2.70	2.70	2.70	2.70			
ZnSO ₄ .7H ₂ O	0.23	0.23	0.23	0.23			
CuSO ₄ .5H ₂ O	0.16	0.16	0.16	0.16			
Na ₂ MoO ₄ .2H ₂ O	0.07	0.07	0.07	0.07			
CaSO ₄ .2H ₂ O	86.08	86.08	86.08	86.08			
CaCl ₂ .2H ₂ O	183.05	183.05	183.05	183.05			
Chemical product		Nutrient solutions					
(ml/100l)	0 mM N	0.6 mM N	1.3 mM N	7 mM N			
Fe-EDDHSA	112.50	112.50	112.50	112.50			

One-way ANOVA

Genotype	0.6 mM N			1.3 mM N		
	ESS	TSS	%ESS	ESS	TSS	%ESS
growthCanopy	167387.00	331052.00	50.56	45566.00	501054.00	9.09
numberLeaves	2.55	6.55	38.93	2.20	6.20	35.48
leafAreaYoungest	4843.00	4985.00	97.15	8639.00	17904.00	48.25
massShootDry	8.51	11.69	72.80	32.79	87.78	37.35
massRootDry	0.13	0.48	27.87	1.72	16.05	10.71
ratioRootShootDry	0.01	0.01	65.32	0.08	0.25	31.78
NUE	9.49	14.29	66.41	5.51	24.99	22.03

TSS represents the total sum of squares, ESS the explained sum of squares, and %ESS the percentage of explained sum of squares by genotype for the 0.6 and 1.3 mM N treatments.