Banana breeding at CIRAD: creating resistant new varieties to avoid the use of pesticides

F. Salmon, F. Bakry, J.C. Efile, S. Ricci, L. Toniutti and J.P. Horry

Banana genetics and breeding team (GABA)
Institute of Genetic Improvement and Adaptation of Mediterranean and Tropical Plants (AGAP institut)
Context

- **Global production 120 MT**
 - For the most, relies on a limited number of varieties
 - *Cavendish* subgroup: 47% of global production
 - 85% dedicated either to self-consumption, local and regional markets
 - the dominant export system relies on the mono-varietal monoculture of *Cavendish*

- **Vulnerable to diseases and pests**
 - genetic base extremely narrow
 - high adaptive capacities of pathogens

- **High environmental and economical impacts**
 - *Black Leaf Streak* (*Pseudocercopora fiensis*)
 - control through the use of fungicides
 - control by managing the disease in the field
 - reduced productivity
 - **FOC TR4** (*Fusarium oxysporum* sp. *Cubense Tropical Race 4*)
 - No chemical control / Jeopardize world production
 - Gros Michel devastated by Panama disease

Introduction of varietal diversity based on the development of multi-resistant varieties
Challenges for breeding

Develop improved varieties to contribute to sustainable production systems

- Environmental constraints, including actual and emerging pests and diseases, climate change
- Supply chains expectations, notably productivity
- Consumers demand, notably fruit quality, organic production

Objectives: to create and select new varieties

- Dessert bananas for export markets (AAA), or for domestic markets (AAA or AAB)
 - Resistance to main diseases (BLS, fusariosis)
 - Fruit quality and productivity
- Cooking Bananas: Plantain (AAB) and others (AAB/ABB)
 - Robustness
 - Tolerance to pests (weevils, nematodes)
 - Fruit quality and processing ability (cooking, flours…)

Banana genetic improvement

Breeding and selecting

Genomics and genetics
Upstream research
Overcome sterility barriers

Scaling-up & development of the adapted production system

Fine tuning, Development of post-harvest system adapted & adapted marketing

Overcome sterility barriers
Banana genetic improvement

Genomics and genetics

- Species complex diversity, organization and evolution
 - identify the contributions of the ancestors to present-day cultivars

- Genome organization and dynamics
 - impact on recombination and chromosome distribution

- Genetic basis and transmissions of traits
 - estimate heritability, predict the value of crosses
 - develop marker-assisted selection (SAM)

select and manage parents in pre-breeding and breeding
Reconstructive breeding scheme

Screening genitors for fusarium resistance under controlled conditions. WUR – Cirad partnership

IDN110 Resistant

Pisang Lilin Susceptible

Female and male fertility
Resistant to:
- BLS
- Nematodes (R. similis and P. coffeae)
- FOC Race
- FOC TR4

Prebreeding

AA
Selected AA
AB
Selected AB
BB
Selected BB

Chromosome doubling

AAA
AAAA
AABB

Breeding

AAA
(4X x 2X crosses)
AAB
AB
ABB

Selection phases
3x hybrid populations

AA improvement:
- resistances
- fruit quality
- fertility

AB / BB Improvement:
- eBSV

Upstream research
Breeding and selecting
Scaling-up & development of the adapted production system
Fine tuning, Development of post-harvest system adapted & adapted marketing

IDN110 Resistant

Pisang Lilin Susceptible

Female and male fertility
Resistant to:
- BLS
- Nematodes (R. similis and P. coffeae)
- FOC Race
- FOC TR4

IDN110 Resistant

Pisang Lilin Susceptible

Female and male fertility
Resistant to:
- BLS
- Nematodes (R. similis and P. coffeae)
- FOC Race
- FOC TR4

Marker-assisted breeding of Musa balbisiana genitors devoid of infectious endogenous Banana streak virus sequences

Selection in 4 phases

Phase I
- Negative selection
 - 1 plant / hybrid
- Characterization of heritable traits

Phase II
- Positive selection
 - Microplot (25 ex./hyb)
- Evaluation of the overall potential
 - productivity
 - commercialization
 - consumer acceptability

Phase III
- Variety development
 - Multi-site
- Optimization of pre- and post-harvest technical itineraries
 - different environmental conditions
 - different farming systems
 - tests in controlled conditions

Phase IV
- Commercial Launch
- Definition of the specific conditions of the partner's marketing channels
 - segmentation
 - by production mode
 - by taste and shape
 - by geographical target
Selection of multi-resistant varieties

Varieties adapted for the local market

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Resistance</th>
<th>938</th>
<th>924</th>
<th>931</th>
<th>Cavendish (cv 902)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black sigatoka</td>
<td></td>
<td>PR+</td>
<td>PR+</td>
<td>PR+</td>
<td>sensible</td>
</tr>
<tr>
<td>E. musae</td>
<td></td>
<td>PR+</td>
<td>PR+</td>
<td>PR+</td>
<td>sensible</td>
</tr>
<tr>
<td>FOC _ race 1</td>
<td></td>
<td>R</td>
<td>R</td>
<td>HR</td>
<td>sensible</td>
</tr>
<tr>
<td>FOC _ TR 4</td>
<td></td>
<td>R</td>
<td>Tolerant</td>
<td>HR</td>
<td>sensible</td>
</tr>
<tr>
<td>Freckle</td>
<td></td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>sensible</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant*</th>
<th>Height (cm)</th>
<th>450</th>
<th>400</th>
<th>500</th>
<th>275</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Girth (cm)</td>
<td>62</td>
<td>66</td>
<td>83</td>
<td>72</td>
</tr>
<tr>
<td>Bunch*</td>
<td>Nb. hands</td>
<td>10</td>
<td>14</td>
<td>17</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Nb. fingers</td>
<td>175</td>
<td>250</td>
<td>350</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Weight (kg)</td>
<td>25</td>
<td>25</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>Fruit*</td>
<td>Length (mm)</td>
<td>200</td>
<td>180</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Grade (mm)</td>
<td>32</td>
<td>36</td>
<td>31</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Weight (g)</td>
<td>130</td>
<td>120</td>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

*2d cycle, station of Neufchâteau, Guadeloupe (FWI)

hybrids AAA

TR4 screening trial in Australia

Upstream research Breeding and selecting Scaling-up & development of the adapted production system Fine tuning, Development of post-harvest system adapted & adapted marketing
A partnership network to evaluate selected hybrids

Upstream research

- **Jamaïca** 925, 938
- **Cuba** 925, 938
- **Costa-Rica** 925, 938, 931, 924
- **Guadeloupe** 925, 938, 931, 924, PRAM 01
- **Martinique** 925, 938, 931, 924 PRAM01
- **Colombia** 931, 938, 924
- **Mayotte** 925, 938, 931, 924 PRAM01

Breeding and selecting

- **Colombia** 931, 938, 924

Scaling-up & development of the adapted production system

- **Australia** 924, 931, 938, 940
- **Nederlands**
- **Montpellier**
- **La Réunion** 925, 938, 931

Fine tuning, Development of post-harvest system adapted & adapted marketing

- **IT2** Institute of Tropical Medicine
- **Banamart**
- **AGROSAVIA**
- **ciram**
- **ciranet**

Countries where the TR4 has been detected (in chronological order)
- Telhoven (2017)
- Indonesia (2016)
- Philippines (2015)
- Jordan (2015)
- Uzbekistan (2015)
- Pakistan (2015)
- Laos (2015)
- Venezuela (2015)
- Thailand (2014)
- Columbia (2014)
- Guatemala (2014)
- Taiwan (2014)
- Peru (2014)

Scaling-up

- Fine tuning, Development of post-harvest system adapted & adapted marketing

On-going field trials

- **Jamaïca** 925, 938
- **Cuba** 925, 938
- **Costa-Rica** 925, 938, 931, 924
- **Guadeloupe** 925, 938, 931, 924, PRAM 01

Field trials in preparation

- **Colombia** 931, 938, 924

TR4 early screening

- **Australia** 924, 931, 938, 940
- **Nederlands**
- **Montpellier**
- **La Réunion** 925, 938, 931
- **Martinique** 925, 938, 931, 924 PRAM01

Upstream research

- **Breeding and selecting**
- **Scaling-up & development of the adapted production system**
- **Fine tuning, Development of post-harvest system adapted & adapted marketing**

The Banana Board

INIVIT

CORBANA

Plant Health Institute Montpellier

Armezihor

Ugban

Agrosavia

Cirad

The Banana Board

INIVIT

CORBANA

Plant Health Institute Montpellier

Armezihor

Ugban

Agrosavia

Cirad
Perspectives

➢ Other varieties in the pipeline

➢ Promoting variety diversification for more resilient production systems

➢ Global approach combining new varieties and cropping systems for sustainable resistance management
Banana breeding at CIRAD: creating resistant new varieties to avoid the use of pesticides

Thank you for your attention

Agronomic evaluation of Cirad's hybrid at South Johnstone, Queensland, Australia
Courtesy Jeff Daniells, QDAF