# Challenges of the management of pest and diseases in organic banana production: a holistic and realistic point of view in export systems

L. de Lapeyre, Cirad, GECO .... and many other contributors !



1. Banana production for exportation

..... Reveals various constrainsts :



Cultivation of Cavendish bananas only Susceptibility to crop ennemies



Cultivation generally in big farms or small farms in large areas Large epidemic processes



Shipping 7-20 days



Cooling at 13°C after packing

Greenlife Acceptability of bananas



1. Banana production for exportation

..... Reveals various constrainsts :



Artificial ripenning

Greenlife Acceptability of bananas



#### Commercialisation mainly in supermarkets

## Economic constraints specific to banana markets

- \* Low prices in supermarkets
- \* Low tolerance for quality defects
- \* Short conservation in supermarkets and trade based on very specific pomologic traits

#### High yields High quality standards



- 2. Control of pest and diseases in the frame of organic rules
- No synthetic pesticides







herbicides





nematicides

Rugby 10 G







insecticides

2. Control of pest and diseases in the frame of organic rules

| ं       | European<br>Commission       | P                | English   |                 |                                 | Search |  |
|---------|------------------------------|------------------|-----------|-----------------|---------------------------------|--------|--|
| Agricul | ture and rural develop       | oment            |           |                 |                                 |        |  |
| Home    | Common agricultural policy ∨ | Sustainability ~ | Farming ∨ | International 🗸 | Data and analysis $ \checkmark$ |        |  |
|         |                              |                  |           |                 |                                 |        |  |

European Commission > Agriculture and rural development > Farming > Organic farming > Organic production and products

#### **Organic production and products**

#### PAGE CONTENTS

Products covered by EU organics rules

Organic production rules

Rules on livestock

Rules for the food chain

Permitted substances in organic production

Rules on wine, aquaculture and hydroponics

Organic plant reproductive material databases

#### Products covered by EU organics rules

European Union organic farming rules cover agricultural products, including aquaculture and yeast. They encompass every stage of the production process, from seeds to the final processed food. This means that there are specific provisions covering a large variety of products, such as:

- seeds and propagating material such as cuttings, rhizome etc. from which plants or crops are grown;
- · live or unprocessed agricultural products;
- feed;
- · processed agricultural products for use as food.

In addition, <u>Annex I to Regulation (EU) 2018/848</u> provides for a list of new products which are closely linked to agriculture that are now also in the scope of the organic legislation. This includes salts, cork stoppers of natural cork, essential oils, raw cotton, raw wool, and beeswax.



2. Control of pest and diseases in the frame of organic rules

#### - Only some products allowed

16.7.2021 EN

Official Journal of the European Union

L 253/13

COMMISSION IMPLEMENTING REGULATION (EU) 2021/1165

of 15 July 2021

authorising certain products and substances for use in organic production and establishing their lists

(Text with EEA relevance)

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007 (<sup>1</sup>), and in particular Article 24(9) and point (a) of Article 39(2) thereof,

Whereas:

(1) Pursuant to Article 9(3) of Regulation (EU) 2018/848, only products and substances authorised under Article 24 of that Regulation may be used in organic production provided that their use in non-organic production has also been authorised in accordance with relevant provisions of Union law. The Commission has already evaluated the use of certain products and substances in organic production on the basis of the objectives and principles laid down in Council Regulation (EC) No 834/2007 (<sup>1</sup>). The selected products and substances were consequently authorised under specific conditions by Commission Regulation (EC) No 889/2008 (<sup>3</sup>) and listed in certain Annexes to that Regulation. The objectives and principles laid down in Regulation (EU) 2018/848 are similar to those in Regulation (EC) No 834/2007. As it is necessary to ensure the continuity of organic production, those products and substances should be included in the restrictive lists to be established on the basis of Regulation (EU) 2018/848.

- 1. Basic substances (from plants or animals, or mineral origin)
- 2. Low Risk active substances (ferric phosphate, Laminarin)
- 3. Micro-organisms



#### 2. Control of pest and diseases in the frame of organic rules

#### - Only some products allowed

#### 4. Active substances not included in any of the above categories

The active substances as approved pursuant to Regulation (EC) No 1107/2009 and listed in the table below may be used as plant protection products in organic production only when they are used in accordance with the uses, conditions and restrictions pursuant to Regulation (EC) No 1107/2009 and taking into account the additional restrictions, if any, in the right column of the table below.

| Number and<br>part of<br>Annex ( <sup>1</sup> ) | CAS                                     | Name                                                    | Specific conditions and limits                                                                                                            |
|-------------------------------------------------|-----------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 139A                                            | 131929-60-7<br>131929-63-0              | Spinosad                                                |                                                                                                                                           |
| 225A                                            | 124-38-9                                | Carbon dioxide                                          |                                                                                                                                           |
| 227A                                            | 74-85-1                                 | Ethylene                                                | only on bananas and potatoes; however, i<br>may also be used on citrus as part of a<br>strategy for the prevention of fruit fly<br>damage |
| 230A                                            | i.a. 67701-09-1                         | Fatty acids                                             | all uses authorised, except herbicide                                                                                                     |
| 231A                                            | 8008-99-9                               | Garlic extract (Allium sativum)                         |                                                                                                                                           |
| 234A                                            | CAS No not<br>allocated<br>CIPAC No 901 | Hydrolysed proteins excluding gelatine                  |                                                                                                                                           |
| 244A                                            | 298-14-6                                | Potassium hydrogen carbonate                            |                                                                                                                                           |
| 249A                                            | 98999-15-6                              | Repellents by smell of animal or plant origin/sheep fat |                                                                                                                                           |
| 255A and others                                 |                                         | Pheromones and other semiochemicals                     | only in traps and dispensers                                                                                                              |
| 220A                                            | 1332-58-7                               | Aluminium silicate (kaolin)                             |                                                                                                                                           |
| 236A                                            | 61790-53-2                              | Kieselgur (diatomaceous earth)                          |                                                                                                                                           |

| 247A      | 14808-60-7<br>7637-86-9                             | Quartz sand                         |                                                                                                                                      |
|-----------|-----------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 343A      | 11141-17-6<br>84696-25-3                            | Azadirachtin (Margosa extract)      | extracted from Neem tree seeds (Azadirachta indica)                                                                                  |
| 240A      | 8000-29-1                                           | Citronella oil                      | all uses authorised, except herbicide                                                                                                |
| 241A      | 84961-50-2                                          | Clove oil                           | all uses authorised, except herbicide                                                                                                |
| 242A      | 8002-13-9                                           | Rape seed oil                       | all uses authorised, except herbicide                                                                                                |
| 243A      | 8008-79-5                                           | Spearmint oil                       | all uses authorised, except herbicide                                                                                                |
| 56A       | 8028-48-6<br>5989-27-5                              | Orange oil                          | all uses authorised, except herbicide                                                                                                |
| 228A      | 68647-73-4                                          | Tea tree oil                        | all uses authorised, except herbicide                                                                                                |
| 246A      | 8003-34-7                                           | Pyrethrins extracted from plants    |                                                                                                                                      |
| 292A      | 7704-34-9                                           | Sulphur                             |                                                                                                                                      |
| 294A 295A | 64742-46-7<br>72623-86-0<br>97862-82-3<br>8042-47-5 | Paraffin oils                       |                                                                                                                                      |
| 345A      | 1344-81-6                                           | Lime sulphur (calcium polysulphide) |                                                                                                                                      |
| 44B       | 9050-36-6                                           | Maltodextrin                        |                                                                                                                                      |
| 45B       | 97-53-0                                             | Eugenol                             |                                                                                                                                      |
| 46B       | 106-24-1                                            | Geraniol                            |                                                                                                                                      |
| 47B       | 89-83-8                                             | Thymol                              |                                                                                                                                      |
| 10E       | 20427-59-2                                          | Copper hydroxide                    | in accordance with Implementing                                                                                                      |
| 10E       | 1332-65-6<br>1332-40-7                              | Copper oxychloride                  | Regulation (EU) No 540/2011 only uses<br>resulting in a total application of maximum<br>28 kg of copper per hectare over a period of |
| 10E       | 1317-39-1                                           | Copper oxide                        | 7 years may be authorised                                                                                                            |
| 10E       | 8011-63-0                                           | Bordeaux mixture                    |                                                                                                                                      |
| 10E       | 12527-76-3                                          | Tribasic copper sulphate            |                                                                                                                                      |
| 40A       | 52918-63-5                                          | Deltamethrin,                       | only in traps with specific attractants against<br>Bactrocera oleae and Ceratitis capitata                                           |
| 5E        | 91465-08-6                                          | Lambda-cyhalothrin                  | only in traps with specific attractants against<br>Bactrocera olege and Ceratitis capitata                                           |

(<sup>1</sup>) Listing according to Implementing Regulation (EU) No 540/2011, numbers and which category: Part A active substances deemed to have been approved under Regulation (EC) No 1107/2009, B, active substances approved under Regulation (EC) No 1107/2009, C basic substances, D low-risk active substances and E candidates for substitution.

### How challenging is it ?



 Pesticide use is generally very important in most tropical humid areas where banana is produced



## How challenging is it ?

Kg of active ingredient used in one year in a representative conventional farm in humid tropics % of quantity of active ingredient used in one year in a representative conventional farm in humid tropics



### ✓ Fungicide use is very important



# Which levers ?



### Focus on the most specific problems for OA (replacement of pesticides)



🖉 cirad

### Example 1. Black Leaf Streak Disease control in organic farms









1. Location of organic farms in dry areas is the most important lever used by farmers

Annual rainfall < 1000 mm mainly to maintain BLSD at low level

| Places dedicated to organic banana production | Surfaces | Annual rainfall |
|-----------------------------------------------|----------|-----------------|
| Peru (Piura)                                  | 9500 ha  | 100 mm          |
| Ecuador (Machala)                             | 20000 ha | 500 mm          |
| Dominican Republic<br>(Mao-Montecristi, Azua) | 18000 ha | 500-1000 mm     |
| Ghana                                         | 600 ha   | 700-1000 mm     |
| Colombia (La Guajira)                         | 3000 ha  | 700-1000 mm     |
| Mexico (Colima)                               | 4000 ha  | 700-1000 mm     |





Water is transported to fields by large canals





Water is pumped or flooded in plots





2. The quest for alternative fungicides .... or a miracle





2. The quest for alternative fungicides .... or a miracle



Dry periods might be a mirage of efficiency !





2. The quest for alternative fungicides .... or a miracle

- ✓ Many products have been registered in all organic banana growing countries
- Efficiency is rarely evaluated in good conditions : low disease level, no untreated control, products are mixed with mineral oil
- ✓ Solid evaluation has been made in different contexts : Dominican Republic, Ivory Coast
- Experimental plots with 3-4 blocks
- Untreated control in each block
- **Reference treatment** in each block : mineral oil at 12-15l/ha
- Broad range of disease descriptors : SED, YLSt, YLS, Number of lesions, Functionnal leaves at flowering
- Long period : several weekly applications (at least 10)









2. The quest for alternative fungicides .... or a miracle

Age of leaves

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_0.jpeg)

### 2. The quest for alternative fungicides .... or a miracle

|                      | Untreated control | Defense<br>elicitor | Tea Tree | Bacillus<br>pumilis | Potassium<br>bicarbonate | Bacillus<br>subtilis | Plant extract<br>(thymol, eugenol) | Mineral oil<br>15 l/ha |
|----------------------|-------------------|---------------------|----------|---------------------|--------------------------|----------------------|------------------------------------|------------------------|
| SED                  | а                 | а                   | а        | а                   | а                        | а                    | а                                  | b                      |
| YLSt                 | а                 | а                   | а        | а                   | а                        | а                    | а                                  | b                      |
| YLS                  | а                 | а                   | а        | а                   | а                        | а                    | а                                  | b                      |
| Number<br>of lesions | а                 | а                   | а        | а                   | а                        | а                    | а                                  | b<br>(-90%)            |
| Green<br>leaves      | а                 | а                   | а        | а                   | а                        | b                    | а                                  | С                      |

\* Most approved biofungicides are ineffective : no difference with untreated control

Mineral oil remains the best protection

![](_page_21_Picture_6.jpeg)

![](_page_22_Picture_0.jpeg)

### 2. The quest for alternative fungicides .... or a miracle

|                      | Untreated control | Eucalyptus<br>extract | Eucalyptus<br>extract + oil | Mineral oil |
|----------------------|-------------------|-----------------------|-----------------------------|-------------|
| SED                  | а                 | а                     | b                           | b           |
| YLSt                 | а                 | а                     | С                           | b           |
| YLS                  | а                 | а                     | С                           | b           |
| Number of<br>lesions | а                 | b                     | d                           | С           |
| Green leaves         | а                 | b                     | d                           | С           |

- Some plant extracts mixed in oil might improve biological efficiency vs reference
- More exploration is needed
- Organic certification is needed (country, UE, EPA, certificaying bodies) U Cirad

![](_page_23_Picture_0.jpeg)

2. The quest for alternative fungicides .... or a miracle

- ✓ Mineral oil is generally a good lever for BLSD control but depends on precipitations and irrigation methods.
- $\checkmark$  Probably not sufficient in large plantations when rainfall > 1000 mm

| Dominican Republic trial | Oil/Forecast<br>year 1 | Oil/Forecast<br>year 2 | Oil/Forecast<br>year 3 |
|--------------------------|------------------------|------------------------|------------------------|
| SED                      | 33                     | 316                    | 841                    |
| YLSt                     | 8,1                    | 6,0                    | 4,2                    |
| YLS                      | 11,3                   | 10,3                   | 7,3                    |
| Leaves at hatvest        | 8,4                    | 8,1                    | 4,2                    |
| Number of treatments     | 1                      | 5                      | 9                      |
| Rainfall                 | 352                    | 1145                   | 1602                   |

![](_page_23_Picture_6.jpeg)

![](_page_24_Picture_0.jpeg)

3. Deleafing a multifunctional lever underestimated

A very efficient **prophyllactic tool** largely performed in most banana farms !

Ascospores are very abundant in unmanaged plots

![](_page_24_Figure_5.jpeg)

Necrotic leaves might produce large amounts of ascospores for more than 150 days (Gauhl, 1994)

![](_page_24_Figure_7.jpeg)

 Deleafing of necrotic leaves drastically reduces inoculum abundance

From Poeydebat et al, Phytopathology : 2018; 108

![](_page_24_Picture_10.jpeg)

![](_page_25_Picture_0.jpeg)

### 3. Deleafing a multifunctional lever underestimated

#### A very efficient and **poorly recognized tool** to mitigate BLSD on greenlife

![](_page_25_Figure_4.jpeg)

 Deleafing one month before harvest has a strong effect on GL (Yellow Sigatoka)

![](_page_25_Figure_6.jpeg)

When regular deleafing of necrotic spots is performed in highly infested spots, GL is not much affected (BLSD)

![](_page_25_Picture_8.jpeg)

![](_page_26_Picture_0.jpeg)

3. Deleafing a multifunctional lever underestimated

A very efficient and **poorly recognized tool** to mitigate BLSD on greenlife

![](_page_26_Figure_4.jpeg)

![](_page_26_Picture_5.jpeg)

![](_page_27_Picture_0.jpeg)

3. Deleafing a multifunctional lever underestimated

A very efficient and **poorly recognized tool** to mitigate BLSD on greenlife

Comparison of two strategies in Humid climate in Martinique through 3 cycle crops

![](_page_27_Figure_5.jpeg)

- Reference = chemical strategy
- Prototype = strategy only based on regular weekly deleafing of necrotic stages

![](_page_27_Picture_8.jpeg)

Important defoliation

![](_page_27_Picture_10.jpeg)

![](_page_28_Picture_0.jpeg)

### 3. Deleafing a multifunctional lever underestimated

A very efficient and **poorly recognized tool** to mitigate BLSD on greenlife

![](_page_28_Figure_4.jpeg)

Comparison of two strategies in Humid climate in

- Reference = chemical strategy
- Prototype = strategy only based on regular weekly deleafing of necrotic stages

![](_page_28_Figure_7.jpeg)

![](_page_28_Figure_8.jpeg)

#### Moderate reduction of bunch weight

![](_page_28_Figure_10.jpeg)

Moderate reduction of greenlife : no ripe

![](_page_29_Picture_0.jpeg)

#### 4. Complementary levers

![](_page_29_Figure_3.jpeg)

![](_page_30_Picture_0.jpeg)

### 5. Synthesis of levers for BLSD control in organic farms

| Location           | Biological contol     | Natural<br>substances | Agricultural practices            |
|--------------------|-----------------------|-----------------------|-----------------------------------|
| Dry areas<br>+++++ | Microorganisms<br>+/- | Mineral oil<br>+++    | Necrotic stages<br>removal<br>+++ |
|                    |                       | Plant extracts<br>+   | Harvest stage<br>++               |
|                    |                       |                       | Fruit pruning<br>+                |
|                    |                       |                       | Irrigation<br>+                   |

All levers must be combined for acceptable control !

![](_page_30_Picture_5.jpeg)

![](_page_31_Picture_0.jpeg)

6. Other levers that need to be further explored

#### Resistant varieties

![](_page_31_Picture_4.jpeg)

Pointe d'or in field

Resistant varieties are available but :

- Crop management is very different to Cavendish and production costs higher or yield lower (Dorel et al, 2016)
- Fruits might suffer physiological defects
- Fruit are not adapted to the transport and the ripening process
- Fruits are not adapted to trade in supermarkets

![](_page_31_Picture_11.jpeg)

Pointe d'or in supermarkets

![](_page_31_Picture_13.jpeg)

Browning on Pointe d'or

![](_page_31_Picture_15.jpeg)

![](_page_32_Picture_0.jpeg)

6. Other levers that need to be further explored

- Plot diversification with trees (agroforestry)
  - ✓ Barriers to dispersion longer distance between hosts
    ✓ Increase of incubation time microclimate
    phyllosphera microbiome

![](_page_32_Picture_5.jpeg)

 Reduction of spore abundance spore interception
Iess inoculum sources

![](_page_32_Picture_7.jpeg)

![](_page_33_Picture_0.jpeg)

### 6. Other levers that need to be further explored

#### Plant nutrition

![](_page_33_Figure_4.jpeg)

Probably a trade off between plant growth and BLSD development : **an optimum should be found** 

![](_page_33_Picture_6.jpeg)

### Example 2. Postharvest diseases control in organic farms

![](_page_34_Picture_1.jpeg)

Crown rot

![](_page_34_Picture_3.jpeg)

Anthracnose

![](_page_34_Picture_5.jpeg)

### Various postharvest diseases

![](_page_35_Figure_1.jpeg)

### Postharvest diseases control in organic farms

#### Synthesis of effective levers

| Location                                                                                                    | Biological<br>contol                                  | Natural<br>substances                                 | Agricultural practices<br>(pre-harvest)                                                                                      | Agricultural practices<br>(post-harvest)                                                                                     |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Ideal place:<br>* dry area and<br>low<br>temperatures<br>(highland)<br>Reduce fruit<br>susceptibility<br>++ | Should be<br>better<br>explored<br>Nexy(yeast)<br>+/- | Should be<br>better<br>explored<br>* citric acid<br>+ | Prophyllaxy :<br>* Floral remnants +<br>bracts removal<br>* Bunch bagging<br>Reduce fruit infection with<br>C. musae<br>++++ | Prophyllaxy :<br>* Bunch washing<br>* Packing station<br>cleaning<br>* Water quality<br>Reduce crown<br>contamination<br>+++ |
|                                                                                                             |                                                       | Plant extracts<br>+/-                                 | Harvest stage<br>Reduce fruit susceptibility<br>++                                                                           | Fruit conservation<br>* Cooling<br>* Modified or controlled<br>atmosphere<br>+++                                             |
|                                                                                                             |                                                       |                                                       | Fruit pruning<br>Reduce fruit susceptibility<br>to CR when NLH is low<br>+                                                   |                                                                                                                              |

### Postharvest diseases control

Effect of removal of inoculum sources and sleeving et on Colletotrichum musae fruit contamination scored at harvest (Fromde Lapeyre *et al.*, Plant Pathology, 2000)

![](_page_37_Figure_2.jpeg)

### Conclusion.....

- No unique solution (silver bullet) for pest and disease control but an integrated more complex combination of levers
- Organic banana extension to rainy areas relies on new varieties resistant to BLSD
- Future of organic farming is undoubtdely towards a diversification of farms and intercropping with trees

![](_page_38_Picture_4.jpeg)

### Thank you for your attention

![](_page_39_Picture_1.jpeg)

![](_page_39_Picture_2.jpeg)

![](_page_39_Picture_3.jpeg)

![](_page_39_Picture_4.jpeg)